RobWorkProject
24.8.23-
|
Manhattan distance metric for vector types. More...
#include <MetricFactory.hpp>
Inherits Metric< T >.
Protected Member Functions | |
Metric< T >::scalar_type | doDistance (const typename Metric< T >::value_type &q) const |
Metric< T >::scalar_type | doDistance (const typename Metric< T >::value_type &a, const typename Metric< T >::value_type &b) const |
Protected Member Functions inherited from Metric< T > | |
virtual scalar_type | doDistance (const value_type &q) const =0 |
Subclass implementation of the distance() method. | |
virtual scalar_type | doDistance (const value_type &a, const value_type &b) const =0 |
Subclass implementation of the distance() method. | |
virtual int | doSize () const |
Subclass implementation of the size() method. More... | |
Metric () | |
Protected constructor called by subclassed. | |
Metric (const Metric &) | |
Disable copying of superclass. | |
Metric & | operator= (const Metric &) |
Disable assignment of superclass. | |
Additional Inherited Members | |
Public Types inherited from Metric< T > | |
typedef T | value_type |
The type of element on which the metric operates. | |
typedef T::value_type | scalar_type |
The type of the scalar. | |
typedef rw::core::Ptr< Metric< T > > | Ptr |
A pointer to a Metric<T>. | |
typedef rw::core::Ptr< const Metric< T > > | CPtr |
A pointer to a const Metric<T>. | |
Public Member Functions inherited from Metric< T > | |
virtual | ~Metric () |
Destructor. | |
scalar_type | distance (const value_type &q) const |
The distance from the zero element to q. | |
scalar_type | distance (const value_type &a, const value_type &b) const |
The distance from element a to b. More... | |
int | size () const |
The dimension of elements on which this metric operates. More... | |
Manhattan distance metric for vector types.
The ManhattanMetric, also known as the taxicab metric or the 1-norm, is a metric on the Euclidean n-Plane. The Manhattan distance between two points
\( P = (p_1, p_2, ..., p_n) \) and \( Q = (q_1, q_2, ..., q_n) \) is defined as \( \sum_{i=1}^{n} |p_i - q_i| \)