RobWorkProject  24.5.15-
CubicSplineInterpolator< rw::math::Transform3DVector< T > > Class Template Reference

Public Member Functions

CubicSplineInterpolator (const rw::math::Transform3DVector< T > &a, const rw::math::Transform3DVector< T > &b, const rw::math::Transform3DVector< T > &c, const rw::math::Transform3DVector< T > &d, double duration)

rw::math::Transform3DVector< T > x (double t) const

rw::math::Transform3DVector< T > dx (double t) const

rw::math::Transform3DVector< T > ddx (double t) const

double duration () const

Public Member Functions inherited from Interpolator< rw::math::Transform3DVector< T > >
virtual ~Interpolator ()
Virtual destructor.

Public Types inherited from Interpolator< rw::math::Transform3DVector< T > >
typedef rw::core::Ptr< InterpolatorPtr
smart pointer type to this class

◆ ddx()

 rw::math::Transform3DVector ddx ( double t ) const
inlinevirtual

Note
The second derivative is a 1-degree polynomial: $$\bf{df}(t)= 2\cdot \bf{c} + 6\cdot \bf{d}\cdot t$$
The second derivative is a 1-degree polynomial: $$\bf{df}(t)= 2\cdot \bf{c} + 6\cdot \bf{d}\cdot t$$

◆ duration()

 double duration ( ) const
inlinevirtual

◆ dx()

 rw::math::Transform3DVector dx ( double t ) const
inlinevirtual

Note
The derivative is a 2-degree polynomial: $$\bf{df}(t)= \bf{b} + 2\cdot \bf{c}\cdot t + 3\cdot \bf{d}\cdot t^2$$
The derivative is a 2-degree polynomial: $$\bf{df}(t)= \bf{b} + 2\cdot \bf{c}\cdot t + 3\cdot \bf{d}\cdot t^2$$

◆ x()

 rw::math::Transform3DVector x ( double t ) const
inlinevirtual

Note
The cubic polynomial is given by a 3-degree polynomial: $$\bf{f}(t)= \bf{a} + \bf{b}\cdot t + \bf{c}\cdot t^2 \bf{d}\cdot t^3$$
The cubic polynomial is given by a 3-degree polynomial: $$\bf{f}(t)= \bf{a} + \bf{b}\cdot t + \bf{c}\cdot t^2 \bf{d}\cdot t^3$$

The documentation for this class was generated from the following file: