Inherits Interpolator< rw::math::Rotation3D< T > >.
◆ ddx()
- Note
- The second derivative is a 1-degree polynomial: \( \bf{df}(t)= 2\cdot \bf{c} + 6\cdot \bf{d}\cdot t \)
-
The second derivative is a 1-degree polynomial: \( \bf{df}(t)= 2\cdot \bf{c} + 6\cdot \bf{d}\cdot t \)
Implements Interpolator< rw::math::Rotation3D< T > >.
◆ duration()
double duration |
( |
| ) |
const |
|
inlinevirtual |
◆ dx()
- Note
- The derivative is a 2-degree polynomial: \( \bf{df}(t)= \bf{b} + 2\cdot \bf{c}\cdot t + 3\cdot \bf{d}\cdot t^2 \)
-
The derivative is a 2-degree polynomial: \( \bf{df}(t)= \bf{b} + 2\cdot \bf{c}\cdot t + 3\cdot \bf{d}\cdot t^2 \)
Implements Interpolator< rw::math::Rotation3D< T > >.
◆ x()
- Note
- The cubic polynomial is given by a 3-degree polynomial: \( \bf{f}(t)= \bf{a} + \bf{b}\cdot t + \bf{c}\cdot t^2 \bf{d}\cdot t^3 \)
-
The cubic polynomial is given by a 3-degree polynomial: \( \bf{f}(t)= \bf{a} + \bf{b}\cdot t + \bf{c}\cdot t^2 \bf{d}\cdot t^3 \)
Implements Interpolator< rw::math::Rotation3D< T > >.
The documentation for this class was generated from the following file: