RobWorkProject  24.5.15-
Public Member Functions | List of all members
CubicSplineInterpolator< rw::math::Rotation3D< T > > Class Template Reference

Inherits Interpolator< rw::math::Rotation3D< T > >.

Public Member Functions

 CubicSplineInterpolator (const rw::math::Rotation3D< T > &a, const rw::math::Rotation3D< T > &b, const rw::math::Rotation3D< T > &c, const rw::math::Rotation3D< T > &d, double duration)
 
rw::math::Rotation3D< T > x (double t) const
 
rw::math::Rotation3D< T > dx (double t) const
 
rw::math::Rotation3D< T > ddx (double t) const
 
double duration () const
 
- Public Member Functions inherited from Interpolator< rw::math::Rotation3D< T > >
virtual ~Interpolator ()
 Virtual destructor.
 

Additional Inherited Members

- Public Types inherited from Interpolator< rw::math::Rotation3D< T > >
typedef rw::core::Ptr< InterpolatorPtr
 smart pointer type to this class
 

Member Function Documentation

◆ ddx()

rw::math::Rotation3D<T> ddx ( double  t) const
virtual

Note
The second derivative is a 1-degree polynomial: \( \bf{df}(t)= 2\cdot \bf{c} + 6\cdot \bf{d}\cdot t \)
The second derivative is a 1-degree polynomial: \( \bf{df}(t)= 2\cdot \bf{c} + 6\cdot \bf{d}\cdot t \)

Implements Interpolator< rw::math::Rotation3D< T > >.

◆ duration()

double duration ( ) const
inlinevirtual

◆ dx()

rw::math::Rotation3D<T> dx ( double  t) const
virtual

Note
The derivative is a 2-degree polynomial: \( \bf{df}(t)= \bf{b} + 2\cdot \bf{c}\cdot t + 3\cdot \bf{d}\cdot t^2 \)
The derivative is a 2-degree polynomial: \( \bf{df}(t)= \bf{b} + 2\cdot \bf{c}\cdot t + 3\cdot \bf{d}\cdot t^2 \)

Implements Interpolator< rw::math::Rotation3D< T > >.

◆ x()

rw::math::Rotation3D<T> x ( double  t) const
virtual

Note
The cubic polynomial is given by a 3-degree polynomial: \( \bf{f}(t)= \bf{a} + \bf{b}\cdot t + \bf{c}\cdot t^2 \bf{d}\cdot t^3 \)
The cubic polynomial is given by a 3-degree polynomial: \( \bf{f}(t)= \bf{a} + \bf{b}\cdot t + \bf{c}\cdot t^2 \bf{d}\cdot t^3 \)

Implements Interpolator< rw::math::Rotation3D< T > >.


The documentation for this class was generated from the following file: