RobWorkProject  24.5.15-
Polynomial.hpp File Reference

Representation of an ordinary polynomial with scalar coefficients (that can be both real and complex). More...

#include <rw/common/Serializable.hpp>
#include <rw/core/macros.hpp>
#include <rw/math/PolynomialND.hpp>
#include <cmath>
#include <limits>
#include <vector>

## Classes

class  Polynomial< T >
Representation of an ordinary polynomial with scalar coefficients (that can be both real and complex). More...

## Namespaces

rw
Deprecated namespace since 16/4-2020 for this class.

rw::math
Matrices, vectors, configurations, and more.

rw::common
Various utilities and definitions of general use.

rw::common::serialization
provide generic handler interface for serialization purposes. To enable serialization of some class MyClass one could either inherit from Serializable or provide overloaded methods to

## Functions

Polynomial operator* (const PolynomialND< Eigen::Matrix< double, 1, 3 >> &a, const PolynomialND< Eigen::Matrix< double, 3, 1 >> &b)
Multiply 3D polynomial vector with 3D polynomial vector. More...

PolynomialND< Eigen::Vector3d > operator* (const PolynomialND< Eigen::Vector3d > &polynomial, const Polynomial<> &p)
Multiply 3D polynomial vector with a polynomial with scalar coefficients. More...

PolynomialND< Eigen::Matrix< double, 1, 3 > > operator* (const PolynomialND< Eigen::Matrix< double, 1, 3 >> &polynomial, const Polynomial<> &p)
Multiply 3D polynomial vector with a polynomial with scalar coefficients. More...

PolynomialND< Eigen::Matrix3d > operator* (const PolynomialND< Eigen::Matrix3d > &polynomial, const Polynomial<> &p)
Multiply 3D polynomial matrix with a polynomial with scalar coefficients. More...

Polynomial< float > operator* (const PolynomialND< Eigen::Matrix< float, 1, 3 >, float > &a, const PolynomialND< Eigen::Matrix< float, 3, 1 >, float > &b)

PolynomialND< Eigen::Vector3f, float > operator* (const PolynomialND< Eigen::Vector3f, float > &polynomial, const Polynomial< float > &p)
Multiply 3D polynomial vector with a polynomial with scalar coefficients. More...

PolynomialND< Eigen::Matrix< float, 1, 3 >, float > operator* (const PolynomialND< Eigen::Matrix< float, 1, 3 >, float > &polynomial, const Polynomial< float > &p)

PolynomialND< Eigen::Matrix3f, float > operator* (const PolynomialND< Eigen::Matrix3f, float > &polynomial, const Polynomial< float > &p)
Multiply 3D polynomial matrix with a polynomial with scalar coefficients. More...

template<>
void write (const rw::math::Polynomial< double > &sobject, rw::common::OutputArchive &oarchive, const std::string &id)

template<>
void write (const rw::math::Polynomial< float > &sobject, rw::common::OutputArchive &oarchive, const std::string &id)

template<>
void read (rw::math::Polynomial< double > &sobject, rw::common::InputArchive &iarchive, const std::string &id)

template<>
void read (rw::math::Polynomial< float > &sobject, rw::common::InputArchive &iarchive, const std::string &id)

## Detailed Description

Representation of an ordinary polynomial with scalar coefficients (that can be both real and complex).

Representation of a polynomial of the following form:

$$f(x) = c_n x^n + c_(n-1) x^(n-1) + c_2 x^2 + c_1 x + c_0$$

The polynomial is represented as a list of coefficients ordered from lowest-order term to highest-order term, $${c_0,c_1,...,c_n}$$.