RobWorkProject  24.5.15-
Classes | Namespaces | Functions
PolynomialND.hpp File Reference

Representation of a polynomial that can have non-scalar coefficients (polynomial matrix). More...

#include <rw/core/macros.hpp>
#include <Eigen/Core>
#include <sstream>
#include <vector>

Classes

class  PolynomialND< Coef, Scalar >
 Representation of a polynomial that can have non-scalar coefficients (polynomial matrix). More...
 

Namespaces

 rw
 Deprecated namespace since 16/4-2020 for this class.
 
 rw::math
 Matrices, vectors, configurations, and more.
 

Functions

PolynomialND< Eigen::Vector3d > operator* (const PolynomialND< Eigen::Matrix3d > &A, const PolynomialND< Eigen::Vector3d > &b)
 Multiply 3D polynomial matrix with 3D polynomial vector. More...
 
PolynomialND< Eigen::Matrix< double, 1, 3 > > operator* (const PolynomialND< Eigen::Matrix< double, 1, 3 >> &a, const PolynomialND< Eigen::Matrix3d > &A)
 Multiply 3D polynomial vector with 3D polynomial matrix. More...
 
PolynomialND< Eigen::Vector3d > operator* (const PolynomialND< Eigen::Matrix3d > &A, const Eigen::Vector3d &b)
 
PolynomialND< Eigen::Matrix< double, 1, 3 > > operator* (const PolynomialND< Eigen::Matrix< double, 1, 3 >> &a, const Eigen::Matrix3d &A)
 
PolynomialND< Eigen::Vector3f, float > operator* (const PolynomialND< Eigen::Matrix3f, float > &A, const PolynomialND< Eigen::Vector3f, float > &b)
 
PolynomialND< Eigen::Matrix< float, 1, 3 >, float > operator* (const PolynomialND< Eigen::Matrix< float, 1, 3 >, float > &a, const PolynomialND< Eigen::Matrix3f, float > &A)
 
PolynomialND< Eigen::Vector3f, float > operator* (const PolynomialND< Eigen::Matrix3f, float > &A, const Eigen::Vector3f &b)
 
PolynomialND< Eigen::Matrix< float, 1, 3 >, float > operator* (const PolynomialND< Eigen::Matrix< float, 1, 3 >, float > &a, const Eigen::Matrix3f &A)
 

Detailed Description

Representation of a polynomial that can have non-scalar coefficients (polynomial matrix).

Representation of a polynomial of the following form:

\( f(x) = C_n x^n + C_(n-1) x^(n-1) + C_2 x^2 + C_1 x + C_0 \)

The polynomial is represented as a list of coefficients ordered from lowest-order term to highest-order term, \( {c_0,c_1,...,c_n}\).